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SOME RESULTS ON PSEUDOSQUARES 

R. F. LUTKES. C. D. PATTERSON. AND H. C. WILLIAMIS 

ABSTRACT. If p is an odd primle, the pseudosquare Lp is defined to l)e the 
least positive nonsquare integer suclh that Lp _ I (imnod 8) an(d the Legeindre 
syirlt)ol (Lp/l) = I for all od0( prim-res q < 1). In this paper wve first discuss thle 
connectioii between pseudosquares and pri iiiality testinig. \N'Ve then describhe 
a new ntlilierical sieving device wilicil was used to exteIld the tab)le of known 
pseudosquares up to L271. W re also present several numrlerical results concerning 
the grothl rate of the pseudosquares. results whiclh so far confiirmi tilat Lp > 

cV: \/. anl inequality that miiust 1hokl( under tile extended Riemiann Hypotlhesis. 

1. INTRODUCTION 

Let p be an odd prime. The pseudosquare Lp is defined in the following fashion: 

(i) L, = 1 (mod 8), 
(ii) the Legendre symbol (Lp/q) = 1 for all odd primes q < p, 

(iii) Lp is the least positive nonsquare integer satisfying (i) and (ii). 

Thus, the pseudosquare Lp behaves locally like a perfect square modulo all primes 
< p, but is nevertheless not a perfect square. Hall [10] has shown that the values 
of Lp must be unbounded as p increases. 

Kraitchik [11, pp. 41-46] seems to have been the first to consider these numbers, 
and in [11] provides a table of them up to L47. Since then various authors, most 
notably D. H. Lehmer, who gave the pseudosquares their name (see Lehmer [16]), 
have extended Kraitchik's list up to L-223 (Stephens and Williams [22]). Notice that 
the values of Lp seem to grow very rapidly with respect to p. 

The growth rate of pseudosquares is of great importance in two problems in 
computational number theory: square recognition and primality testing. Cobham 
[8] has shown that if a number is not a perfect square, then under the Extended 
Riemann Hypothesis (ERH) it nmust fail to be a square modulo a small prime p. 
Thus, we expect that the pseudosquares should grow quickly. Incidentally, this 
problem of perfect power recognition, which can be of importance in primality 
testing and factoring, has been discussed more recently by Bach and Sorenson 
[5]. Also, as shown in Section 2, if pseudosquare growth is sufficiently rapid, then 
there exists a deterministic polynomial-time (in log N) algorithm for determining 
the prime character of N. At the moment the best unconditional results on the 
primality testing problem are those of Adleman, Pomerance, and Rumely [1], who 
show that the problem can be solved for a given N by a deterministic algorithm of 
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time complexity 0 ((log N) c log log log N), and of Adleman and Huang [2], who show 
that there is a probabilistic polynomial-time algorithm for solving this problem. 
However, both of these algorithms are very complicated and difficult to implement, 
whereas the (conditional) algorithms provided in Section 2 are very simple. We 
should also mention here that Bach and Huelsbergen [4] have used the table of 
pseudosquares in [22] to support their heuristic argument that G(n), the smallest 
value of x such that the primes < x generate the multiplicative group modulo n, is 
asymptotically < (log 2) -1 log n log log n. 

Because of the importance of the question of pseudosquare growth rate, it would 
be very helpful if the table in [22] could be extended. Unfortunately, this is very 
difficult to do simply because the pseudosquares do seem to grow very quickly. 
The purpose of this paper is first to discuss the connection between pseudosquares 
and primality testing and then to describe briefly a new sieving device, called 
MSSU, which has enabled us to extend the table in [22] from L223 up to L271. 
Finally, we present several numerical results concerning the growth rate of the 

known pseudosquares. These results, thus far, confirm that Lp > e , a result 
which must hold under the ERH. Indeed, they seem to support a belief that the 
pseudosquares grow much more rapidly than this. 

2. PSEUDOSQUARES AND PRIMALITY TESTING 

Throughout this section we will use the symbol N to denote an odd, positive 
integer. If p is an an odd prime, we say that (-1)(P-1)/2p is an apparent1 (quadratic) 
residue of N when (N/p) = 1; we say that (-1)(P-l)/2p is an apparent nonresidue 
of N when (N/p) = -1. Furthermore, if the Jacobi symbol (-1/N) = 1(-1), then 
-1 is said to be an apparent residue (nonresidue) of N; also, the apparent character 
of 2 and -2 can be defined in a similar fashion through the values of the Jacobi 
symbols (2/N) and (-2/N). Note that by the law of quadratic reciprocity, we see 
that if N is a prime, then any apparent residue of N is in fact a quadratic residue 
of N, and any apparent nonresidue of N is a nonresidue of N. 

In response to a nonrigorous method of primality testing advocated by Kraitchik 
[12] (for a discussion of this test see Lehmer [15], Beeger [6], Kraitchik [13]), Hall 
[10] produced a mathematically correct version of Kraitchik's idea. This is provided 
in 

Theorem 2.1. If all the factors (not necessarily prime factors) of N are be- 
low Lp and if {-1, 2, -3,..., (-1)(P-1)/2p} can be divided into two classes A = 
{al,a2, . . , ar}, the apparent residues of N, and B = {bI, b2, . . ,bnl, the apparernt 
nonresidues of N, such that every ai is also a quadratic residue of N and every bibj 
is a quadratic residue of N, then N is a prime or a power of a prime. O 

Notice that this is a primality test that involves the pseudosquares. Furthermore, 
Beeger [7] actually used this test to prove that a certain 13 digit factor of 1245 + 1 
is a prime. The main difficulty in utilizing Hall's test is the problem of determining 
whether a given integer m is a quadratic residue of N. This was usually done by 
rather tedious hit-or-miss methods which attempted to express certain multiples of 
N in the form x -mky2. 

This latter problem was avoided in a test by Selfridge and Weinberger (the S-W 
test) presented in [23]. In order to discuss this test, we must first define the numbers 

1This is Hall's [10] translation of Kraitchik's [12] "residu eventuel". 
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that we will denote by Mp, where p is any prime. These must satisfy the following 
two properties: 

(i) the Jacobi symbol (q/Mp) = 1 for all primes q such that 2 < q < p, 
(ii) Mp is the least positive nonsquare integer satisfying (i). 

The S-W test can now be given as 

Theorem 2.2. If 

(1) all prime factors of N must exceed B, 
(2) N/B < Mp, 
(3) p(N-1)/2 ?1 (mod N) for all primes pi such that 2 < pi < p, 
(4) p(N-1)/2-1 (mod N) for some prime pj such that 2 < p < p, 

then N is a prime or the power of a prime. E 

A randomized version of this test was given by Lehmann [14]. Of course, this 
would be a most useful test of primality if it could be shown that Mp grows very 
quickly as a function of p. At the moment this seems very far from being achieved. 
We can, however, appeal to a result of Bach [3]: 

Theorem 2.3. Let G be a nontrivial subgroup of Z/(m)* such that n E G for all 
O < n < x. Then if the ERH holds, we must have 

x < 2(logm)2. D 

Consider the subgroup G of Z/(Mp)* which is made up of all k such that 
(k/Mp) = 1. Since Mp is. not a perfect square, there must be some odd prime 
q such that qa IMp and a is odd. Let t be a quadratic nonresidue of q and put r _ t 
(mod qa), r =1 (mod Mp/qa). Clearly, r E Z/(MP)* and (r/Mp) =-1; thus, G is 
a nontrivial subgroup of Z/(Mp). Also, for all 0 < n < p, we get n E G; hence, 

p < 2(logMp)2, 

or 

(2.1) Mp > e . 

Notice that if N < Mp, there must, by definition of Mp, exist some prime q such 
that 2 < q < p and (q/N) 7y 1. If N is a prime, then either (q/N) = -1 and 
q(N-1)/2_-1 (mod N) or q = N. If q = N, there must be some prime r < q such 
that (r/q) =-1; hence r(N1)/2 _-1 (mod N). It follows that if B = 1, and N 
is a prime < Mp, then the conditions (3) and (4) of the S-W test must be satisfied. 
Thus, by (2.1), the S-W test is a deterministic polynomial-time prime test for N 
when B = 1. 

As a proof of this result is provided in [23], we will only sketch the main ideas 
in it as a sequence of lemmas. We will then use these lemmas to provide a proof of 
Theorem 2.7, the proof of Theorem 2.2, the S-W test, being similar. 

Lemma 2.4. Let 2SlN - 1 (s > 1) and suppose that there exists some c E Z such 
that 

c(N- 1)/2 -1 (mod N) 

If q is a prime divisor of N, then 2 q -1. D 
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Lemma 2.5. Let 2SlN - 1 (s > 1) and suppose that there exists some c E Z such 
that 

c(N1)/2 1 (mod N). 

If (c/q) 74 1 for some prime factor q of N such that q -1 (mod 2s), then 25 lq -1. I 

Lemma 2.6. If 2SIIN - 1 (s > 1), 2sj1q, - 1, 2Sj1q2 - 1, where ql,q2 are primes 
and c is some integer such that (c/qlq2) 74 1, then 

c(N-1)12 # ?1 (mod qlq2)- L 

We combine the ideas of the Hall test and the S-W test to obtain 

Theorem 2.7. If 

(1) all prime divisors of N exceed B, 
(2) N/B < Lp for some prime p, 

(3) t(N1)/2-?1 (mod N) for all primes pi such that 2 <-Pi < p, 
(4) 2(N1)/2 -1 (mod N) when N -5 (mod 8), 

(N-1)/2 1 (mo 
p3 1 =1 (mod N) for some odd pj < p when N=-1 (mod 8), 

then N is a prime or prime power. 

Proof. Assume that N is not a prime or prime power. If N --1 (mod 4), then 
(_l)(N-1)/2 --1 (mod 4). If N # -1 (mod 4), then by condition (4) there must 
be some c E Z such that 

c(Nl)/2 -1 (mod N). 

It follows that if 2SflN - 1, then q -1 (mod 2s) for all primes q i N. If q I N, we 
must have q < N/B; thus, if q _1 (mod 8), there must exist some Pk such that 
(pk/q) (q/pk) 74 1. If q 5 (mod 8), then (2/q) = -1, and if q -1 (mod 4), 
then (-1/q) -1; thus, by Lemma 2.5 and condition (3), we find that 

k 

N =1 + 2st = flqi, 

where qi 1+2sti, 2 t ti and qi is a prime for i = 1, 2, . . ., k. Since t is odd, we must 
have k odd; hence, k > 3. Since N is not a prime power, there must be at least 
two distinct primes qi, q2 such that qjq2 j N and qjq2 < N/B. If qiq2 1 (mod 8), 
there must exist some prime pk such that (Pk/qlq2) = (qlq2/Pk) 74 1; if qjq2= 5 
(mod 8), then (2/qlq2) -1, and if qq2- -1 (mod 4), then (-1/qlq2) =-1. By 
condition (3) and Lemma 2.6 we get a contradiction. O 

Also note that condition (3) of Theorem 2.7 must hold if N is a prime. Also, if 
N -5 (mod 8), then 2 (N-1)/2 _-1 (mod N) when N is a prime, and if N 1 

(mod 8), we see by the same reasoning as used earlier that (Pk /N) = -1 for some 
odd pk < p when N is a prime. Thus, if B= 1, and N<Lp, the conditions (3) 
and (4) must hold. 

Define negative pseudosquares (see Lehmer, Lehmer and Shanks [18]) Np for odd 
primes p by: 

(i) Np =-1 (mod 8), 
(ii) (-Np/pi) = 1 for all odd primes pi such that 2 < pi < p, 

(iii) Np is the least positive integer satisfying (i) and (ii). 
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Recently, the table of Np given in [22] has been extended by Bronson and Buell [9] 
from N211 to N227. 

By quadratic reciprocity it follows that 

(p-/Lp) = (pi/Np) = 1 

for all primes Pi such that 2 < Pi < p; thus it is easy to see that 

(2.2) Mp = min{Lp, Np}. 

It is possible, then, for the test of Theorem 2.7 to be slightly better than the S-W 
test, in that Lp seems often to exceed Np. Also, as long as we have a table of values 
of Lp, the test of Theorem 2.7 can certainly be used as a primality test which is 
very easy to implement on even a pocket calculator. As long as the numbers to be 
tested are not very large (< 1026 or thereabouts), it should work reasonably well. 

By our previous remarks we can see that if the growth rate of the pseudosquares 
is sufficiently rapid, then primality testing of N could be achieved in deterministic 
polynomial time. By (2.2) and (2.1), this is certainly the case under the ERH, but 
it might be possible to show that a result like 

(2.3) Lp > e 

holds without appealing to the ERH. Thus, it is of some interest to examine, at 
least empirically, the growth rate of Lp. 

3. THE MSSU 

The real difficulty in the test given in Theorem 2.7 is the problem of computing 
the values of Lp. The best method currently known is still the sieving technique 
that Lehmer [17] so vigorously advocated. 

Let in1, iM2 , M. .... Mk be k positive integers which are relatively prime in pairs. 
To each Ti there corresponds a set R = {ri, ri2, ... , rini } of ni admissible residues. 
Given A, B E Z (A < B), the general sieving problem is that of determining those 
values of x such that A < x < B and x (mod Ti) E Ri (i = 1, 2, ..., k). Such 
problems can be attacked by the use of special purpose devices called number sieves. 
It is not our purpose here to discuss such mechanisms in detail; for more information 
concerning the history and development of these machines, the reader is referred 
to [22] and Patterson [20]. Suffice it to say that a number sieve achieves its speed 
through parallelism, each candidate for x (mod mi) being tested for membership 
in Ri for all values of i < k simultaneously. In speaking of such devices it is 
customary to use the term ring corresponding to mi to refer to the reduced residues 
{0, 1, 2, ... , mi- 1} modulo min. 

Let pi be the ith prime. In the case where we are searching for pseudosquares, 
we could put m1 = 8, mi = pi (i > 2), ni = 1, ni = (pi - 1)/2, r1,2 = 1, and 
use as the values of rij (i > 1) the quadratic residues of mi. Indeed, in order to 
increase the sieving speed, we can set up the problem in such a way that it will run 
faster than it would by using this naive approach. For example, since we know that 
Lp _1 (mod 24), we can consider Lp 1 + 24Kp and sieve, using different sets of 
admissible residues, to find Kp, thereby effecting a 24 fold speed-up. 

We first used a larger version of OASiS [22] called OASiS II (OASiS with an 
additional sieve unit, see [22, p. 63]) to search for pseudosquares beyond the limit 
of Table 2 in [22]; however, after many months of continuous running of the device, 
we were able to find only two additional pseudosquares: L227 and L229. As this rate 
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of sieving was just too slow, it was decided to construct a new sieve, the MSSU, 
which could search for values of Lp at a much greater rate than OASiS II. In what 
follows we give a brief description of this new sieve and its capabilities. 

The Manitoba Scalable Sieve Unit (MSSU) employs Very Large Scale Integration 
(VLSI) circuits designed by Patterson [19, 20] at the University of Calgary. These 
sieve chips were manufactured using mature (2[tm) CMOS gate array technology 
with a circuit complexity equivalent to 10,000 logic gates. Each device can accom- 
modate the first 30 prime numbers (2 through 113) as moduli. The first four rings 
are special in that they correspond to moduli which are the prime powers 16, 9, 
25 and 49. At present, the MSSU design utilizes a ring clock rate of 24 million 
shifts per second. Eight solution taps per ring bring the effective sieving rate to 
192 million. 

The small physical size and availability of a modest number of sieve chips made 
it possible for the MSSU design to incorporate 32 VLSI Sieve devices operating in 
parallel. The raw aggregate sieving rate of the MSSU is thus in excess of 6.4 billion 
integers per second. Effective partitioning of sieving problems across multiple sieve 
chips can result in a further speed-up. As an example, the pseudosquare problem 
can be partitioned to combine the moduli 8, 3, 5, 7 and 11, producing an implicit 
modulus of 9240 with 30 associated residue classes. The resulting effective sieving 
rate utilizing 30 Sieve chips (one per residue class) is thus: 

9240 x 192 million/sec = 1.774 trillion/sec = 6.387 quadrillion/hour. 

This optimization can be extended by combining the moduli 8, 3, 5, 7, 11 and 13, 
to form 180 residues, and then partitioning the problem into 6 subproblems of 30 
chips each. This results in an increase of the maximum sieving rate by a factor of 
13/6. 

The MSSU hardware consists of two major subunits, the controller and the sieve 
chip array. The sieve controller consists of a high-speed microprocessor, memory 
and communication interfaces. The controller software accepts a small number of 
high-level commands from the host via a standard serial terminal port and trans- 
lates them into the necessary low-level operations to be performed by the individual 
sieve chips. Typically, the host is a multi-user workstation; however, if need be, a 
dumb terminal can be used. The second major subunit is the sieve array circuit 
board. The sieve array contains 16 VLSI sieve devices and additional circuitry 
required to route ring data (admissible residues) and solution values to the desired 
chips. A maximal configuration of the MSSU supports the use of two sieve arrays 
for a total of 32 chips. 

The nature of sieving problems often requires postprocessing of the solutions 
generated by the sieving hardware. Typically, we constrain solutions to have a 
specified property, such as being nonsquare or prime. This requires that hardware 
solutions be "filtered" to eliminate unwanted solutions. For many sieving problems, 
most notably the pseudosquares problem, solution filtering can be a bottleneck. 
The MSSU design utilizes several features which make solution filtering extremely 
efficient. Most importantly, filtering is performed locally by the control processor, 
not by relying on a host computer system like some previous systems. 

The pseudosquares problem specifies a set of linear congruences which generate 
a large number of perfect square solutions which must be discarded using a perfect 
square filter. At low count values, where the density of perfect squares is greatest, 
sieve hardware is often idle while filter resources are overwhelmed. When running 
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the pseudosquares problem on the MSSU, starting from an initial count of 1, we 
observed during the first hour that sieving proceeded at 35.6% of the theoretical 
maximum speed. As the density of perfect squares diminished, this value increased 
to 86.5% during the second hour, and 94.1% during the third. At higher count 
values, sieving rates exceed 99% of the maximum speed of the hardware, attesting 
to the efficiency of filtering on the MSSU. 

The MSSU is connected to a Unix host which provides the file storage and edit- 
ing capabilities required to specify problems and capture solutions. Problems are 
defined using a simple text format which is simple to code and easy to read. Con- 
sistency checks, referred to as checkpoints, are performed hourly, thus permitting 
efficient recovery from hardware errors by restarting the problem from the last 
successful checkpoint. Off-line solution processing is supported, using an arbitrary- 
precision math package. 

4. NUMERICAL RESULTS 

The MSSU was used to search for all pseudosquares Lp and all negative pseu- 
dosquares Np up to 1019. (In the case of Lp we ran the MSSU a little further.) We 
also searched for the least prime solution for Lp and Np. Extensions of Tables I 
and II of [18] are presented in Tables 4.1 and 4.2 (see pp. 368 and 369). 

Denote by h(D) the value of the class number for the quadratic field K = Q(\D). 
Also, denote by L(1, X) the value of the Dirichlet L-function L(s, X) at s = 1, where 

oc 

L(s, X) = E X(n)n-s, 
n=1 

x(n) is the Kronecker symbol (d/n), and d is the discriminant of K6. After Shanks 
[21] we define the Upper Littlewood Index (ULI) of IC to be the value of 

L(1, X)/(2e'1 log log idj). 

If the Riemann Hypothesis on L(s, X) above holds, we must have 

L (1,I X) < {1I + o(l) }2e log log I dl; 

thus, we expect that the value of the ULI should not greatly exceed 1. In Tables 4.3- 
4.6 we present the values of h, L(1, X) and the ULI for the various fields C = Q( D) 
with D = L or -Np from Tables 4.1 and 4.2. Tables 4.3-4.8 are located in the 
Supplement section of this issue. Notice that, although we have attempted to 
maximize the value of L(1,x) by selecting these values of D, the results of our 
computations provide us with no reason to suspect that the Riemann Hypothesis 
is false for any of these D values. 

In the course of determining the values of Lp and Np we also accumulated all of 
the values of L, N < 1019 such that 

L _ 1 (mod 8), (L/p) = 1 (L not a perfect square) 

and 

N - -1 (mod 8), (-N/p) =l 

for all odd primes p < 199. This provided us with two lists, each comprising about 
4000 numbers. We evaluated h, L(1, X) and the ULI for IC = Q( D) with D = L 
and D = -N for all L and N values in these lists. 
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TABLE 4.1. Positive pseudosquares 

p least solution least prime solution 
83 2805544681 = 127 x 859 x 25717 8114538721 
89 2805544681 9176747449 
97 2805544681 23616331489 

101 10310263441 = 4007 x 2573063 23616331489 
103 23616331489 23616331489 
107 85157610409 = 397 x 214502797 196265095009 
109 85157610409 196265095009 
113 196265095009 196265095009 
127 196265095009 196265095009 
131 2871842842801 2871842842801 
137 2871842842801 2871842842801 
139 2871842842801 2871842842801 
149 26250887023729 389 x 67483000061 26437680473689 
151 26250887023729 89436364375801 
157 112434732901969 112434732901969 
163 112434732901969 112434732901969 
167 112434732901969 112434732901969 
173 178936222537081 178936222537081 
179 178936222537081 178936222537081 
181 696161110209049 = 3793 x 59471 x 3086183 6072205049848081 
191 696161110209049 6072205049848081 
193 2854909648103881 = 331 x 16451 x 524290601 6072205049848081 
197 6450045516630769 = 9529397 x 676857677 11641399247947921 
199 6450045516630769 11641399247947921 
211 11641399247947921 11641399247947921 
223 11641399247947921 11641399247947921 
227 190621428905186449 = 1033661 x 184413873509 196640248121928601 
229 196640248121928601 196640248121928601 
233 712624335095093521 = 28099 x 25361199156379 781158046093912369 
239 1773855791877850321 = 356366341 x 4977618781 6938117179828687609 
241 2327687064124474441 = 479 x 4859471950155479 9064125655411231729 
251 6384991873059836689 = 112741 x 56634160359229 ? 
257 8019204661305419761 = 6151 x 15329 x 85049496359 ? 
263 10198100582046287689 = 277 x 1091 x 1151 x 29318344777 ? 
269 10198100582046287689 ? 
271 10198100582046287689 ? 

Excerpts of these results are presented in Tables 4.7 and 4.8, where we give the 
values of L or N for which the values of the corresponding L(1, X) exceeds that for 
all previous values of L or N. Again, in spite of our attempt to try to maximize 
the ULI, there appears to be no violation of the Riemann Hypothesis. 

Let pi denote the ith prime (p1 = 2). If we make the somewhat naive assumption 
(there will always be fluctuations) that the solutions of 

(4.1) x -1 (mod 8), (xlpi) = 1 (i = 1, 2,...,n) 

are equidistributed in the region 0 < x < 8p2p3p4 Pn, then we would expect that 
if p = Pn, then2 

Lp 18p2p3 Pn/S, 

20f course we are assuming here that the least solution of (4.1) is not a perfect square. 
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TABLE 4.2. Negative pseudosquares (t indicates that the negative 
pseudosquare is larger than the corresponding positive pseu- 
dosquare.) 

p least solution least prime solution 
137 844276851239 = 794239 x 1063001 t4306732833311 
139 1043702750999 = 389 x 5689 x 471619 t4306732833311 
149 4306732833311 4306732833311 
151 8402847753431 8402847753431 
157 47375970146951 = 151717 x 312265403 70864718555231 
163 52717232543951 = 223 x 1747 x 6863 x 19717 t317398900373231 
167 100535431791791 = 9873817 x 10182023 t501108392233679 
173 t251109340045079 2777 x 90424681327 t501108392233679 
179 t493092541684679 4723 x 104402401373 t501108392233679 
181 493092541684679 50.1108392233679 
191 493092541684679 5551185799073591 
193 1088144332169831 293 x 464941 x 7987687 5551185799073591 
197 1088144332169831 5551185799073591 
199 1088144332169831 7832488789769159 
211 1088144332169831 7832488789769159 
223 t71608584429428591 = 397 x 2083 x 86593503641 t102097158739597271 
227 88163809868323439 = 96757 x 911187923027 102097158739597271 
229 t218748706425968039 = 12241 x 17870166361079 t315759454565514431 
233 423414931359807911 = 241 x 1756908428878871 t868116409360316399 
239 695681268077667119 = 3413 x 203832777051763 3412527725201978759 
241 1116971853972029831 = 1721 x 869521 x 746416591 3546374752298322551 
251 1116971853972029831 3546374752298322551 
257 3546374752298322551 3546374752298322551 
263 3546374752298322551 3546374752298322551 
269 3546374752298322551 3546374752298322551 

where S is the number of solutions of (4.1) in the given region. Since 
n 

Sf= J(pi - 1)/2, 
i=2 

we get 
n 

Lp 21? fPi /(Pi -1). 

By Mertens' Theorem we get 

p c2n logp 

for a constant cl = 20, suggesting that the nth pseudosquare should grow expo- 
nentially in n. In fact, since Pn - n log n, we would expect that 

log(Lp/ log n) n (log 2 + o(1)) + C2, 

where C2 = -y + log 2. 
In Figure 4.9, we present a plot of the values of log(Lp/ log n) for the Lp given 

in Table 4.1 against the values of n. The straight line represents the least squares 
line fitted to these data. For this line we have 

y = .67987n + 4.4835. 
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In( Lp/In(n) ) vs. n 
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FIGURE 4.9 

Thus, these numerical data lend some support to the heuristic belief that Lp should 
grow exponentially in n. In Figure 4.10 we have plotted the values of log Lp against 
p. We have also plotted the values of p/pj2. Note that the growth rate of log Lp is 
much greater than that of p/pj2, supporting (2.3). Thus, from the numerical data 
that we have so far been able to determine, it appears that Lp has a growth rate 

well in excess of e/P/2 . Indeed, our heuristic analysis above suggests that since 
n Pnj log Pn we should have a growth rate for Lp of the form 2 (Plog P)(1+o(1)) a 
suggestion confirmed numerically in Figure 4.10. We should also point out that this 
growth rate for Lp could also be predicted from the plausible assumption made in 
[4] that pseudosquares will provide extreme values of G(p). Under this assumption 
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In(Lp) vs. p 
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we would have 
log Lp log log Lp 

log2 

thus LogLp La p log 2/log p. 
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